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1. INTRODUCTION

In his paper (Acta Math. Acad. Sci. Hungar. 5 (1954), 109-127) Uber die
Konvergenz des Hermite-Fejerschen Interpolationsverfahrens of 1954 Geza
Freud considered the well-known Hermite-Fejer interpolation process H,,f
taken at the zeros of general orthogonal polynomials and gave conditions
ensuring that limn ~x, HJ( t) = I( t). Here I is a bounded function defined
on [-1, IJ and continuous at t. Recently, I. V. Rybaltovskii [19J and
independently R. Bojanic and F. W. Cheng [3 J showed that the Her
mite-Fejer process based on the zeros of the Chebyshev polynomials
diverges as n -+ 00 provided I has a jump discontinuity at t. Moreover,
there is a conjecture of Bojanic stating that any continuous interpolation
process diverges at a jump discontinuity.

The aim of this paper is to consider the analogous questions for
generalized sampling series given by

(SiYf)(t):= k~r. f. f(~) X(Wt-k) (tE IR; W>Oj, (1.1 )

where I is now a bounded function defined on R First, necessary and suf
ficient condition will be given upon X such that

lim (SiYI)(tj = f(t)
"'V-·f

(1.2 )

at each point of continuity of.l It will turn out that (1.2 j is essentially
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equivalent to Lt~x X(x - k) = I, X E IR, which can be rewritten VIa

Poisson's summation formula in terms of the Fourier transform X' as

x' (2kn) =
k=O

k E Z\ {O}.

Next the behaviour of (I. I) for W ---> 00 at a jump discontinuity will be
investigated. In this respect,

lim (SJWf)(t) = af(t + 0) + (I - a)f(t - 0)
W-x

(1.3)

if and only if Lk > x X( x - k) = rx. The latter condition can also be expressed
equivalently in terms of the Fourier transform (cf. Theorem 2). The surpris
ing fact here is that for continuous X equality (1.3) implies X(O) = 0, which
in turn implicates that (I.I) cannot have the interpolation property

(SJWf) (~)=f (~) (k E Z; W> 0). (1.4 )

This confirms Bojanic's conjecture.
The paper also recalls some results from [12] on rates of convergence

associated with (1.2), and gives some examples of functions X. In particular,
it is shown that if X is discontinuous, then the convergence at jump discon
tinuities (1.3) is, however, compatible with the interpolation property (1.4).

2. KERNELS FOR GENERALIZED SAMPLING SERIES

Concerning notations, let N, Z, IR, and C be the sets of all naturals, all
integers, all reals and all complex numbers, respectively. Let B(IR) denote
the space of all bounded functions f: IR ---> C, and C(IR) the subspace of
those f E B(IR) which are uniformly continuous on IR, endowed which the
usual supremum norm II . II. Further, let II (IR) be those XE B( IR) for which
the series Lk~ ex Ix(x - k)1 converges uniformly on [0, I]. Some proper
ties of the latter class are listed in (cf. [12])

LEMMA 1. Let XE II (IR).

(a) Lr~ -x IX(x-k)1 converges uniformly on each compact subinter
val of IR.

(b) Uniformly for all x E IR there holds

lim I Ix(x - k)1 = o.
Ix kj > R
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(c) If X is Lebesgue measurable, then it is also (absolutely) Lebesgue
integrable over IRL

(d) For each f E B( ~) the series (1.1) converges uniformly on compact
intervals with respect to t and with respect to W.

Our first result on the convergence behaviour of the series (1.1) for
W --+ 00 is given in

THEOREM 1. (a) The following two assertions are equivalent for
XELl(~):

(i) for each f E B( ~) and each point t E ~ of continuity off there
holds

lim (Siv f)( t) = f( t),
W---+'X..l

(ii) Lf~ -00 X(x-k)= 1 (XE [0,1)).

(b) IfxEII(~) is continuous, then each of the assertions of part (a) is
equivalent to:

(iii)
1

XA (2kn) = \ jbr.'
( 0,

k=O

k E Z\ {O},

where XA(v):= (1/jbr.)Jx x x(u)e- iVu du, VE~, is the Fourier transform of

x·
The proof of (ii) => (i) follows by standard arguments using Lemma 1(b);

the converse is immediate by choosingf(x) == 1. For the equivalence of (ii)
and (iii) see [12]; cf. also the proof of Theorem 2(ii *) <0> (iv*) below.

A function XE 11(~) satisfying (i) or equivalently (ii) of Theorem 1 is said
to be a kernel (for a generalized sampling series). If it is continuous, it is
called a continuous kernel. Hence a kernel has properties (i) and (ii) by
definition, and a continuous kernel additionally property (iii).

Whereas Theorem 1 deals with the approximation of a function f by the
series Sivf at a point of continuity, the next aim is to investigate this series
at a jump discontinuity of f, i.e., at a point t where the limits

f(t +0):= lim f(t + e),
/: __ 0+

f(t-O):= lim f(t-e)
/; -+ 0 +

exist and are different. For a kernel X the functions

t/Jx+(x):= L x(x-k),
k<x

t/J x (x):= L x(x-k)
k>x

(XE ~)
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will be needed. These two series converge for all x E:R and represent
functions with period one.

LEMMA 2. Let X he a continuous kernel. Then t/J I is continuous Fom the
right at the integers, and t/J I is continuous from the left there.

The proof for XI follows easily from the representation

t/J
I

(x)= L X(x-k)
k -1/ t I

(x E en, n + I))

and the uniform convergence of the latter series on [n, n + I), n E 7L (cf.
Lemma la). The result for t/J 1+ can be proved similarly.

As a counterpart of Theorem lone now has

THEOREM 2. Letj E B( ~) have ajump at t "" 0, and let :x E C

(a) The following three assertions are equivalent for a kernel X:

(i) lim (S'iv!)(t)=:xj(t+O)+(I-:x)f(t-O),
~v _ rf.-

WI¢f

(ii) t/J
I

(x)=:x (XE(O, I)),

(iii) t/J/(x)=I-:x (XE(O,!)).

(b) Ii" X is a continuous kernel, then the .f(lllowing jlve assertions are
equivalent:

(i*) lim (S~J)(t) = :xjU + 0) + (I -:x) f(t - 0),
Jcv--~ $

(ii*) t/J/(x)=:x (xE[O,I)),

(iii*) t/Jx+(x)=I-:x (xE[O,I)),

h:: J ·2k {:XI, fbr, k = 0,(iv*) (l/v 2n) 0." x(u)e Inudu= "
, . 0, k E 7L\ {°},

(v*) (l/}h) J(~ X(u) e i2knu du = {(l- :X)/~, k = 0,
0, k E 7L\ {°}.

Proof Let us first set

\ f(x) -f(t - 0), x < t,

gl(x):= 10' X= t,
\ f(x) -f(t + 0), x> t.

Then g IE B( ~) is continuous at zero, and hence by Theorem!

lim (S~, gl)(t) = 0.
)1/_ cor.

(2.1 )
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Moreover, one has the representation

29

(S~f)(t)= (S~gl)(t)+f(t-O)+ {f(t+O)- f(t-O)} l/t;(Wt) (Wt¢Z).

(2.2)

Now, if (ii) is satisfied, then l/t; (x) = a for all x E IR\Z since l/t x is periodic;
(i) follows from (2.2) by letting W ----> 00, noting (2.1). Conversely, if (i)
holds, then one has again by (2.2) that

af(t + 0) + (l -a)f(t - 0)

= f( t - 0) + {f(t + 0) - f( t - O)} lim l/t; (Wt).
W-<X,;'
WtfJ'

Since f( t +0) # f( t - 0), this implies

lim l/t x- ( Wt) = a
W----tX
WIfE

or, equivalently for x E (0, 1), n EN,

lim l/t x- (.'K + n) = a.
II-X

Noting once more that l/t; has period one, assertion (ii) is obvious. The
equivalence of (i) and (iii) can be established by similar arguments. As to
part (b), if X is continuous, then the series (1.1) is continuous with respect
to W> 0 by Lemma I(d), and so one can drop the restriction Wt ¢ Z in (i).
Similarly, since l/t x is continuous from the right at the integers by
Lemma 2, it must be equal to a everywhere, in particular at zero; likewise
l/tx+(x)= I-a, XE [0, I).

Before verifying the equivalence of (iv*) and (v*) with the other asser
tions we show

COROLLARY 1. Ifx is a continuous kernel satisfying (i*), then X(O)=O.

The proof follows immediately from (ii*), (iii*) above as well as (ii) of
Theorem 1, noting that

x

1= I x(-k)=l/t;(O)+x(O)+l/tt(O)=a+x(O)+I-a.
k = .y_

This result is somewhat surprising. It means in particular that a con
tinuous kernel with property (i *) cannot have the familiar bell-shaped
graph around the origin. A typical kernel having this property is a dipole.

640/5011-3
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Now the proof of Theorem 2(b) will be completed. Setting Xo(x):= X(x)

for x<O and :=0 for x):O, then if;x (X)=L:~ JXo(x-k) is a con
tinuous function on [0, I) with period one. By Poisson's summation
formula (cf. [4, p. 201]) its Fourier expansion is given by

if;z (x)~Jh i: x~(2kn)ei2krr\
k~

k

Therefore if; x- (x) = a, x E [0, I), if and only if the Fourier series reduces to
the term for k=O, and this term is equal to a. This is exactly (ii*)<o:> (iv*).
Finally the equivalence (iv*) <0:> (v*) follows from Theorem I(iii).

In the following, when refering to the assertion (i) or (i*) we speak of
convergence (of a generalized sampling series) at a jump discontinuity.

Let us recall a result concerning the order of approximation in regard to
(1.2) (see [12]). Here we need the modulus of continuity offE C(lR),

w(c5;f):= sup{ 1I,f(' + h) -fOil; Ihl < c5) (6 >0),

as well as the absolute moment of XE B( 1R1) of order}' ): 0, defined by

THEOREM 3. Let XEC(IR1) he a kernel.

(a) The series (1.1) defines a family of hounded linear operators from
C( 1R1) into itself; sati!>fving

lim IIS}vf-fll =0
~v-x

(b) I{m,(x)<clO, then

IISivf-fll ~ M,w(W 'J)

(fE C(IR1)).

(fE C(IR1); W> 0).

(c) If m r + 1(x) < CfJ for some r E N, then the following three assertions
are equivalent:

(i) IISivf-fll~M2w-rw(W-I;f(r)) (fE c(r)(IR1); W>O),

(ii) Lk~ -ex; (x-kFx(x-k)=O (XE [0, I);j= 1,2,... , r),

(iii) [X
A

]Cil(2kn) = 0 (k E Z; j= 1,2,..., r).
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The constants M 1 and M 2 depend on X and r only, and c(r)(IR):= {IE C(IR);
j(r) E C(IR)}.

For results concerning the rate of convergence in the case where only the
absolute moment of order 0 < y < 1 is finite see [12].

Conditions of type (ii), (iii) of Theorems 1 and 3 are not new. They were
already used in connection with convergence and stability results for finite
element approximation. See Fix and Strang [8], Aubin [I, pp. 12, 131],
for example; also Dahmen and Micchelli [6].

Since the series (1.1) may be regarded as a discretized version of the con
volution integral

UtvjHt) := Wr f(u) X[ W(t - u)] du,
'x'

(2.3 )

it is of interest to compare the results of Theorems 1, 2, and 3 with
corresponding ones for the integral (2.3). It is well known that

lim UtJHt)=f(t)
W---t'A-

holds for suitable f and t if and only if

(2.4 )

r X(u) du= 1,
x

or rc

X(x-u)du=1 (XEIR).
-- (X'

(2.5)

This equivalence is the counterpart of (i) =- (ii) of Theorem I, the series in
the latter being replaced by integrals. Rewriting (2.5) as XA(O)= 1/j2;,
then (2.4)=-(2.5) corresponds to (i)=-(iii) of Theorem 1. However, in case
of the integral (2.3) there is only one condition upon the Fourier transform
( v), namely at v = 0, whereas in case of the series there are countably
many such conditions. Hence it follows that any X satisfying (i) of
Theorem 1 also satisfies (2.4), but not conversely.

Similarly one has (cf. [2, p. 23] )

lim Utvi)(t) = af(t + 0) + (1-a) f(t - 0)
w-----,> Cjj

if and only if

1 fO 1 f a-- X(u)du=-- X(x-u)du=--
j2; -7 j2; u>x ~

(2.6)

(XEIR). (2.7)

This equivalence can be compared with Theorem 2 in the same way. But
here still another difference occurs between the series (1.1 ) and the integrals
(2.3). Whereas (2.7) is always satisfied for some c<EiC, condition (ii) of
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(Fejer's kernel),

(de la Vallee Poussin's kernel),

Theorem 2 is not necessarily so. This means that (2.6) holds for every ker
nel X whenever the right-hand side is meaningful, but (i) of Theorem 2 is
valid only under additional assumptions upon X.

For counterparts of Theorem 3 for integrals see [4, Sect. 3.4].

3. EXAMPLES OF KERNELS

Let cp E B(.R) be continuous and absolutely integrable over IR such that
cpA(O)= Ij.J2n and cpA(V)=O for Ivl ~2n. In this case cp is an entire
function of exponential type ~ 2n, or, a so-called bandlimited function.
Since cp E II (IR) (cf. [10, p. 124]), one easily obtains by Theorem 1 that cp is
a kernel. Furthermore, cp is uniformly continuous on IR, i.e., cp E C(IR), and
one has by Theorems I and 3

COROLLARY 2. Let cp be given as above.

(a) IlfEB(IR) is continuous at tEIR, then

lim (S'~J)(t) =f(t).
11/ ----+:1.

(b) For(EC(IR) there holds

lim IISY'vf-fll=O.
I-V----+ /.

It should be mentioned that applications of Theorem 3(b) or (c) do not
necessarily give best possible estimates. In this respect see [5, 14-16] where
direct and inverse approximation theorems as well as saturation theorems
are to be found.

Particular examples of bandlimited kernels are

)._~ (Sin X/2)2
cp,(x .- 2n x/2

3 sin(x/2) sin(3x/2)
CP2(x):=2n' 3x2/4

sin(nxj2) sin nx
<p}(x) := (nx)2j2

Corollary 1 immediately yields that the sampling series associated with
these kernels cannot converge at jump discontinuities. This is also a par
ticular case of a result which will be proved below. In fact, it will be seen
that no bandlimited kernel at all can have property (i) or (i*) of
Theorem 2.
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Next take X= Bn , n = 2, 3,..., where Bn is the central B-spline of degree n
given via its inverse Fourier transform by (cf. [13, p. 12])

Bn(x)= fi;f~oo B:(v) e
ivx

dv, B:(v):= fi;C i:;i2r (3.1)

Since B: is an entire function of exponential type n12, it follows by the
Paley-Wiener theorem that Bn has support [ -nI2, nI2]; hence it belongs
to 11(1R). So it follows by Theorem 1 and Theorem 3 that

COROLLARY 3. (a) IffEB(IR) is continuous at tEIR, then

(3.2)

(b) For r = 0 or r = 1 there holds

On the other hand, since

2 Jcx (Sin v)nBn(O)=- - dv
nov

2 ex; In ( sin v )n (Sin v )n
~;k~O 0 v+2kn +(-It v+(2k+1)n dv>O,

it follows by Corollary 1 that the series in (3.2) cannot converge at jump
discontinuities. To overcome this disadvantage we will make use of

LEMMA 3. Let Xl' X2 be two continuous kernels having support in
[ - a, a] and [ - b, b], respectively, and ex E C. Then

X3(X) := exx,(x - a) + (1- ex) X2(X + b)

is again a continuous kernel satisfying

Ji!?oo k~~OO f(~) X3(Wt-k)=exf(t+O)+(l-ex)f(t-O) (3.3)
WIrtz

for every f E B( IR) and every t E IR for which f( t + 0) and f( t - 0) exist.
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The proof follows readily by Theorems I and 2, noting that

(/'E: IR:),

Applying now Lemma 3 to XI = X2 = BIl , a = h = n/2, yields

COROLLARY 4. For f E B( IR:) and a E C there holds

lim f / (~) {aBI/( Wt - k - n/2) + (I ~ a) BI/( Wt - k + n/2) 1
w~x; W
w/¢? k ~ x

=a/( t + 0) + (1- a) I( t - 0)

providedf(t+O) and/(t-O) exist.

For further kernels built up from the B-splines BI/ the reader is referred
to [7, II].

We conclude this section with an example of a discontinuous kernel. Let

1

(Ixl - 1)/2,

= (3 -Ixl )/2,
0,

I ~ Ixl <2

2 ~ Ixl < 3
elsewhere;

then C 2 is a continuous kernel satisfying (i*) of Theorem 2 with a=± by
Corollary 4. Next consider the step function

I
1,

-I
SIx) := _ 1/2:

0,

Ixl < I

1 < Ixl <2

Ixl =2
elsewhere.

One easily verifies that Lt~ _x SIx - k) = 0, X E [0, I), and
Lk > x SIx - k) = 0, X E (0, I). Hence it follows that

is again a kernel satisfying (ii) of Theorem 2 with a = 1.
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COROLLARY 5. For! E B(~) there holds

X] (k) 1
Ji~ k~~X] f W D 2(Wt-k)="2 {j(t+O)+ f(t-O)}
Wt,,:z

35

whenever the right-hand side is meaningful.

Note that the series associated with D 2 converges at jump discontinuities
although D 2(O) = 1. This is no contradiction to Corollary 1 since D 2 is dis
continuous. We will return to this example in Section 5.

4. PREDICTION BY MEANS OF

DURATION- LIMITED KERNELS

The theory of generalized sampling series established so far can also be
used to compute function values at a point t by using only samples at
points k/W with k/W::::; t or even k/W < t. If the variable of t is regarded as
time, this means that f can be computed at future time t if it is known in
the past.

To carry this out one just needs to take a kernel X with support con
tained in the right half-axis. More precisely, if the support of X is contained
in [T" T 2J for some 0::::; T, < T 2 ::::; 00, then the sampling series takes the
form

(Swf)(t)= I f(~r) x(Wt-k),
kE 1'\.

where the set A. c 7L is given by

(4.1 )

To construct those kernels we start with an arbitrary kernel having support
in [ -a, a]. Then for each T~ 0

x*(x):= X(x - T - a)

has support contained in [T, T + 2aJ; it is again a kernel. The latter
follows from

(VEIR)

and Theorem 1.
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As an example, take X(x):= B2(x), and set for some T'?O

x-T,

Bt(x) :=B2(x-l- T)= 2+ T-x,

0,

T~x< T+ I
T+ I ~x< T+2

elsewhere

COROLLARY 6. (a) Let fE B(IR), and t be a point of continuity off
Then for arbitrary T,? 0 there holds

(W> 0).

lim L f(~) B2(Wt-k-l- T)=f(t),
W~XkEA' W

where A*:= {kE1'; t-(T+2)/W~k/W~t-T/W}.

(b) Iff E C( IR), then (4.2) holds uniformly with respect to t E IR.

(c) If f E C( IR), then

L~. f(~) B2(Wt-k-l- T)-·f(t)11 ~MIW(W-I;f)

(4.2)

Note that one needs the samples only for k/W ~ t - T/W, T,? 0
arbitrary, and one finds f at the time t. But it should be pointed out that
the constant M 1 depends on Bt, so in particular on T.

The convergence at jump discontinuities could also be handled in this
frame.

5. SAMPLING SERIES DIVERGING

AT JUMP DISCONTINUITIES

In this section It IS shown that two important classes of continuous
kernels cannot have the property (i *) of Theorem 2.

THEOREM 4. If X is a continuous kernel having the interpolation property
(1.4 ) for each bounded function f, then the associated sampling series diverges
for W -> 00 at the jump discontinuities.

The proof follows from the fact that the interpolation property is
equivalent to

fl ,
x(k) = 0,

together with Corollary I.

k=O

k E 1'\{O},
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Theorem 4 can also be stated as follows. An interpolation process of
the form (1.1) cannot approximate a function f at a jump discontinuity.
A corresponding result for the Hermite-Fejer interpolation process was
recently established by Bojanic and Cheng [3].

THEOREM 5. If cp is a bandlimited kernel as described at the beginning of
Section 3, then the limit relation (i *) of Theorem 2 cannot hold.

Proof Assume that (i*) is valid in this instance. Then by Theorem 2
one has that

exo

l/;;;(x)= L cp(x-k)=a
k=l

(x E [0, 1)),

the series converging absolutely and uniformly on compact intervals. This
implies by [10, p. 127] that L%"~ 1 cp(x - k) has an analytic extension to the
whole complex plane, which must be equal to a; in particular

exo

L cp(x-k)=a
k~l

Furthermore, for arbitrary x E IR

(XEIR).

a=j'+l f cp(u-k)du= f Inl

cp(u-k)du= j' .. cp(u)du, (4.1)
x k~l k~lX -exo

the interchange of summation and integration being justified in view of the
uniform convergence of the series involved. The desired contradiction now
follows by considering (4.1), letting x ---+ 00 and x ---+ - 00, respectively.
Indeed, x ---+ 00 yields a = 1, whereas x ---+ - 00 yields a = 0.

An analogous result for the classical Shannon sampling series was
already proved by de la Vallee Poussin [18], and the particular case of
Theorem 5 for Fejer's kernel CP2 is due to Theis [19].

Let us mention that the continuity of X in Theorem 4 is essential. For
example, the (discontinuities) kernel D 2 of Section 3 produces a sampling
series which not only converges at jump discontinuities but also has the
interpolation property. Indeed,

k=O

k E Z\ {O}.

But this is not surprising. Take, e.g., the convolution integral with Fejer's
kernel CP2 of Section 3, denote it by u wf, and define

(u* f)(t) := {(uwfHt),
W f(t),

t ¥-k/W
t=k/W

(tEIR; W>O;kEZ).
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Then (o-tiJH t) is a family of discontinuities functions converging for
W -+ 00 to f(t) at a point of continuity and for W -+x, Wt ¢: IE, to
Hf(t + 0) + f(t - OJ} at a jump discontinuity. Nevertheless, there holds the
interpolation property (o-tifHk/W) = f(k/Wj, k E IE, W> O. However,
there is an essential difference between the (ftif and the series with kernel
D2 . Indeed, the discontinuities of o-~f are removable, whereas those of the
latter are not.
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